What are Genotypes?

What are genotypes?
Introduction:
The genotype of an organism is its complete set of genetic material. Genotype can also be used to refer to the alleles or variants an individual carries in a particular gene or genetic location. The number of alleles an individual can have in a specific gene depends on the number of copies of each chromosome found in that species, also referred to as ploidy. In diploid species like humans, two full sets of chromosomes are present, meaning each individual has two alleles for any given gene. If both alleles are the same, the genotype is referred to as homozygous. If the alleles are different, the genotype is referred to as heterozygous.
Mendelian inheritance:
Traits that are determined exclusively by genotype are typically inherited in a Mendelian pattern. These laws of inheritance were described extensively by Gregor Mendel, who performed experiments with pea plants to determine how traits were passed on from generation to generation. He studied phenotypes that were easily observed, such as plant height, petal color, or seed shape. He was able to observe that if he crossed two true-breeding plants with distinct phenotypes, all the offspring would have the same phenotype. For example, when he crossed a tall plant with a short plant, all the resulting plants would be tall. However, when he self-fertilized the plants that resulted, about 1/4 of the second generation would be short. He concluded that some traits were dominant, such as tall height, and others were recessive, like short height. Though Mendel was not aware at the time, each phenotype he studied was controlled by a single gene with two alleles. In the case of plant height, one allele caused the plants to be tall, and the other caused plants to be short. When the tall allele was present, the plant would be tall, even if the plant was heterozygous. In order for the plant to be short, it had to be homozygous for the recessive allele.
Non-Mendelian inheritance:
For some traits, neither allele is completely dominant. Heterozygotes often have an appearance somewhere in between those of homozygotes. For example, a cross between true-breeding red and white Mirabilis jalapa results in pink flowers. Codominance[edit] Codominance refers to traits in which both alleles are expressed in the offspring in approximately equal amounts. A classic example is the ABO blood group system in humans, where both the A and B alleles are expressed when they are present. Individuals with the AB genotype have both A and B proteins expressed on their red blood cells. Epistasis Main article: Epistasis Epistasis is when the phenotype of one gene is affected by one or more other genes. This is often through some sort of masking effect of one gene on the other. For example, the "A" gene codes for hair color, a dominant "A" allele codes for brown hair, and a recessive "a" allele codes for blonde hair, but a separate "B" gene controls hair growth, and a recessive "b" allele causes baldness. If the individual has the BB or Bb genotype, then they produce hair and the hair color phenotype can be observed, but if the individual has a bb genotype, then the person is bald which masks the A gene entirely. Polygenic traits[edit] Main article: Polygene A polygenic trait is one whose phenotype is dependent on the additive effects of multiple genes. The contributions of each of these genes are typically small and add up to a final phenotype with a large amount of variation. A well studied example of this is the number of sensory bristles on a fly. These types of additive effects is also the explanation for the amount of variation in human eye color.Genotyping:
Genotyping refers to the method used to determine an individual's genotype. There are a variety of techniques that can be used to assess genotype. The genotyping method typically depends on what information is being sought. Many techniques initially require amplification of the DNA sample, which is commonly done using PCR. Some techniques are designed to investigate specific SNPs or alleles in a particular gene or set of genes, such as whether an individual is a carrier for a particular condition. This can be done via a variety of techniques, including allele specific oligonucleotide (ASO) probes or DNA sequencing. Tools such as multiplex ligation-dependent probe amplification can also be used to look for duplications or deletions of genes or gene sections. Other techniques are meant to assess a large number of SNPs across the genome, such as SNP arrays. This type of technology is commonly used for genome-wide association studies.