what are heterotrophs?

Introduction:

A heterotroph is an organism that cannot produce its own food, instead taking nutrition from other sources of organic carbon, mainly plant or animal matter. In the food chain, heterotrophs are primary, secondary and tertiary consumers, but not producers. Living organisms that are heterotrophic include all animals and fungi, some bacteria and protists, and many parasitic plants. The term heterotroph arose in microbiology in 1946 as part of a classification of microorganisms based on their type of nutrition. The term is now used in many fields, such as ecology in describing the food chain. Heterotrophs may be subdivided according to their energy source. If the heterotroph uses chemical energy, it is a chemoheterotroph (e.g., humans and mushrooms). If it uses light for energy, then it is a photoheterotroph (e.g., green non-sulfur bacteria).

Types:

Heterotrophs can be organotrophs or lithotrophs. Organotrophs exploit reduced carbon compounds as electron sources, like carbohydrates, fats, and proteins from plants and animals. On the other hand, lithoheterotrophs use inorganic compounds, such as ammonium, nitrite, or sulfur, to obtain electrons. Another way of classifying different heterotrophs is by assigning them as chemotrophs or phototrophs. Phototrophs utilize light to obtain energy and carry out metabolic processes, whereas chemotrophs use the energy obtained by the oxidation of chemicals from their environment.

Photoorganoheterotrophs, such as Rhodospirillaceae and purple non-sulfur bacteria synthesize organic compounds using sunlight coupled with oxidation of organic substances. They use organic compounds to build structures. They do not fix carbon dioxide and apparently do not have the Calvin cycle. Chemolithoheterotrophs like Oceanithermus profundus obtain energy from the oxidation of inorganic compounds, including hydrogen sulfide, elemental sulfur, thiosulfate, and molecular hydrogen. Mixotrophs (or facultative chemolithotroph) can use either carbon dioxide or organic carbon as the carbon source, meaning that mixotrophs have the ability to use both heterotrophic and autotrophic methods. Although mixotrophs have the ability to grow under both heterotrophic and autotrophic conditions, C. vulgaris have higher biomass and lipid productivity when growing under heterotrophic compared to autotrophic conditions.

Heterotrophs, by consuming reduced carbon compounds, are able to use all the energy that they obtain from food (and often oxygen) for growth and reproduction, unlike autotrophs, which must use some of their energy for carbon fixation. Both heterotrophs and autotrophs alike are usually dependent on the metabolic activities of other organisms for nutrients other than carbon, including nitrogen, phosphorus, and sulfur, and can die from lack of food that supplies these nutrients. This applies not only to animals and fungi but also to bacteria.

Flowchart:

  • Autotroph:
  • Chemoautotroph
  • Photoautotroph
  • Heterotroph:
  • Chemoheterotroph
  • Photoheterotroph

Ecology:

Many heterotrophs are chemoorganoheterotrophs that use organic carbon (e.g. glucose) as their carbon source, and organic chemicals (e.g. carbohydrates, lipids, proteins) as their electron sources. Heterotrophs function as consumers in food chain: they obtain these nutrients from saprotrophic, parasitic, or holozoic nutrients. They break down complex organic compounds (e.g., carbohydrates, fats, and proteins) produced by autotrophs into simpler compounds (e.g., carbohydrates into glucose, fats into fatty acids and glycerol, and proteins into amino acids). They release the energy of O2 by oxidizing carbon and hydrogen atoms from carbohydrates, lipids, and proteins to carbon dioxide and water, respectively.

Loading full article...